72 research outputs found

    Mammographic image restoration using maximum entropy deconvolution

    Get PDF
    An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate an improvement in image spatial resolution in realistic noisy radiological images with no associated penalty in terms of reduction in the signal-to-noise ratio perceived by the observer. Images of the TORMAM mammographic image quality phantom were recorded using the standard magnification settings of 1.8 magnification/fine focus and also at 1.8 magnification/broad focus and 3.0 magnification/fine focus; the latter two arrangements would normally give rise to unacceptable geometric blurring. Measured point-spread functions were used in conjunction with the MEM image processing to de-blur these images. The results are presented as comparative images of phantom test features and as observer scores for the raw and processed images. Visualization of high resolution features and the total image scores for the test phantom were improved by the application of the MEM processing. It is argued that this successful demonstration of image de-blurring in noisy radiological images offers the possibility of weakening the link between focal spot size and geometric blurring in radiology, thus opening up new approaches to system optimization.Comment: 18 pages, 10 figure

    Evaluation of EIT systems and algorithms for handling full void fraction range in two-phase flow measurement

    Get PDF
    In the aqueous-based two-phase flow, if the void fraction of dispersed phase exceeds 0.25, conventional electrical impedance tomography (EIT) produces a considerable error due to the linear approximation of the sensitivity back-projection (SBP) method, which limits the EIT's wider application in the process industry. In this paper, an EIT sensing system which is able to handle full void fraction range in two-phase flow is reported. This EIT system employs a voltage source, conducts true mutual impedance measurement and reconstructs an online image with the modified sensitivity back-projection (MSBP) algorithm. The capability of the Maxwell relationship to convey full void fraction is investigated. The limitation of the linear sensitivity back-projection method is analysed. The MSBP algorithm is used to derive relative conductivity change in the evaluation. A series of static and dynamic experiments demonstrating the mean void fraction obtained using this EIT system has a good agreement with reference void fractions over the range from 0 to 1. The combination of the new EIT system and MSBP algorithm would significantly extend the applications of EIT in industrial process measurement

    Three Dimensional Electrical Impedance Tomography

    Get PDF
    The electrical resistivity of mammalian tissues varies widely and is correlated with physiological function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening

    The holistic phase model of early adult crisis

    Get PDF
    The objective of the current study was to explore the structural, temporal and experiential manifestations of crisis episodes in early adulthood, using a holistic-systemic theoretical framework. Based on an analysis of 50 interviews with individuals about a crisis episode between the ages of 25 and 35, a holistic model was developed. The model comprises four phases: (1) Locked-in, (2) Separation/Time-out, (3) Exploration and (4) Rebuilding, which in turn have characteristic features at four levels—person-in-environment, identity, motivation and affect-cognition. A crisis starts out with a commitment at work or home that has been made but is no longer desired, and this is followed by an emotionally volatile period of change as that commitment is terminated. The positive trajectory of crisis involves movement through an exploratory period towards active rebuilding of a new commitment, but ‘fast-forward’ and ‘relapse’ loops can interrupt Phases 3 and 4 and make a positive resolution of the episode less likely. The model shows conceptual links with life stage theories of emerging adulthood and early adulthood, and it extends current understandings of the transitional developmental challenges that young adults encounter

    On the Role of Faith in Sustainability Management: A Conceptual Model and Research Agenda

    Get PDF
    International audienceThe objective of this article is to develop a faith development perspective on corporate sustainability. A firm’s management of sustainability is arguably determined by the way decision-makers relate to the other and the natural environment, and this relationship is fundamentally shaped by faith. This study advances theoretical understanding of the approach managers take on sustainability issues by explaining how four distinct phases of faith development—improvidence, obedience, irreverence and providence—determine a manager’s disposition towards sustainability. Combining insights from intentional and relational faith development theories, the analysis reveals that a manager’s faith disposition can be measured according to four interrelated process criteria: (1) connectivity as a measure of a manager’s actual engagement and activities aimed at relating to sustainability; (2) inclusivity as a measure of who and what is included or excluded in a manager’s moral consideration; (3) emotional affinity as a measure of a manager’s sensitivity and affection towards the well-being of others and ecological welfare; and (4) reciprocity as a measure of the degree to which a manager is rewarded for responding to the needs and concerns of ‘Others’, mainly in the form of a positive emotional (and relational) stimulus. The conceptual model consolidates earlier scholarly works on the psychological drivers of sustainability management by illuminating our search for a process of faith development that connects with an increasingly complex understanding of the role of business in society

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    An investigation of search pattern extent in the threshold contrast detection task

    No full text
    corecore